沥青砼心墙堆石坝施工组织设计

沥青砼心墙堆石坝施工组织设计
积分:20
特惠
VIP全站资料免积分下载
立即下载
同类资料根据编号标题搜索
文档
仅供个人学习
反馈
文件类型:.zip
资源大小:834.56K
资源类别:施工组织设计
资源属性:
会员资源

施组设计下载简介:

内容预览随机截取了部分,仅供参考,下载文档齐全完整

沥青砼心墙堆石坝施工组织设计

沥青砼心墙堆石坝施工组织设计

(1)《水利水电工程施工组织设计规范》SL303—2004;

(2)《水利水电工程施工测量规范》SL52—93;

(3)《爆破安全规程》GB6722—86;

DB63/T 1602-2017标准下载(4)《水工建筑物岩石基础开挖工程施工技术规范》SL47—94。

(5)《水工建筑物水泥灌浆施工技术规范》SL62—94;

(6)《水利水电工程钻孔压水试验规程》SL25—92;

(7)《水工混凝土施工规范》DL/T 5144—2001;

(8)《水工混凝土外加剂技术规程》DL/T5100—1999;

(9)《水工混凝土试验规程》SD105—82;

(10)《水工混凝土钢筋施工规范》DL/T5169—2002;

(11)《混凝土拌和用水标准》JGJ63—89。

(12)《混凝土质量控制标准》GB50164—92;

(13)《热轧钢筋》GB1499—84;

(14)《硅酸盐水泥、普通硅酸盐水泥》GB175—92;

(15)《钢筋焊接及验收规范》JGJ18—96;

(16)《预制混凝土构件质量检验评定标准》GBJ321—90;

(17)《浆砌石坝施工技术规定》(试行)SD120—84;

(18)《砌体工程施工及验收规范》GB50203—98;

(19)《钢筋焊接及验收规范》JGJ18—96;

(20)《压力钢管制造安装及验收规范》DL5017—93;

(21)《水工金属结构防腐蚀规范》SL105—95;

(22)《混凝土大坝安全监测技术规范》DL/T5178—2003;

(23)《水利水电建设工程验收规程》SL223—1999;

沥青混凝土心墙堆石坝工程是隘口水库枢纽工程的主体单位工程,包括坝基开挖处理、灌浆平洞、帷幕灌浆(基础防渗)、上下层帷幕搭接灌浆、心墙混凝土基础(含廊道)、沥青砼混凝土心墙、坝体填筑、坝面护坡、坝顶工程、上下游平台、观测工程、护岸等12个分部工程。根据初步设计文件,其中主要工程量见下表:

本单位工程完成后,高80.2m的沥青混凝土心墙堆石坝,坝体高程达549.20m,与宽16m的开敞式溢洪道、高55.10m的岸边斜卧式取水塔及87.49km的引水隧洞、灌溉干支渠114.92km(其中支渠27.43km)、2座电站及1座水厂组成隘口水库枢纽。本单位工程计划施工至2008年12月,跨2007年度、2008年度2个汛期。

平江河流域属亚热带湿润季风气候区,气候温和,四季分明,日照不足,雨量充沛,降雨集中,伏旱明显。按秀山气象站资料,多年平均降水量1317mm,降雨大于0.1mm的多年平均天数158天,多年平均气温16.5℃,低于5℃的多年平均天数28天,极端最低气温-8.5℃,极端最高气温39.6℃,多年平均日照数1231.4h,多年平均水面蒸发量1191.1m,多年平均陆面蒸发量为465.6mm,多年平均风速1.4m/s,多年平均最大风速14.0m/s。

2.2.2水文基本资料

平江河流域径流主要由降雨补给,年内分配不均匀。坝址以上多年平均年径流量7848.1万m3,P=5%代表年径流量6510万m3,多年平均流量2.48m3/s。

平江河属典型的山区型河流,洪水由暴雨形成,流域24小时暴雨最大值为215.9mm,降雨强度段多集中在6~12小时内。洪水多出现于6~9月,一次洪水过程一般持续1~3日,峰型多为单峰,洪水陡涨陡落,洪峰流量年际变化大,秀山水文站1996年实测最大洪峰流量1260m3/s,1994年仅为140m3/s。

坝址处设计洪水流量和洪水量成果见表2—1,防护区区间设计洪水见表2—2,洪水过程线推求成果见表2—3。

表2—1 坝址设计洪水成果表 单位:m3/s,万m3

表2—2 坝址至芒洞桥(美沙上游)区间设计洪水成果表

表2—3 隘口水库洪水过程线

按秀山水文站实测的洪水资料用比拟法推求坝址分期洪水,4月份雨季开始为主汛期过渡段,5~9月为主汛期,10~11月洪水较少、为汛后过渡段,12~3月为枯水期,分期洪水成果见表2—4。

表2—4 分期洪水成果表 单位:m3/s

2.3.1河谷地貌、地层岩性、地质构造

坝址位于隘口中学上游约150m。河谷形态呈“U”型,河谷底宽约110m。河床覆盖层厚度8~27m,最厚达38m,基岩面高程452~482m,坝轴线上游H25-H13-H23-H21-ZK2孔一线为深槽。岩层走向与河流流向夹角35~60 °,为斜向谷。 坝址及其枢纽建筑物涉及到的地层见表2—5。

坝址区位于钟灵复式背斜北西翼与平阳盖向斜南东翼接合部位,岩层倾向320~350°,倾角16~35°。

坝址比较大的断层有三条,为F2(隘口断层),F13及f4。

F2断层由角砾岩、碎裂岩组成,最宽一般5m,断续溶蚀宽0.7m,设计水位以上断层带发育小溶洞,设计水位以下断层带未见明显溶蚀且透水性小。

F13断层为角砾岩及碎裂岩,断层带宽1~5m,局部10m,地表多溶蚀成3~5cm宽缝或约1m左右的溶槽,沿断层带及上盘∈3m灰岩中发育直径1~2m小溶洞。对右岸坝肩的岩溶渗漏及坝肩的稳定有重要的影响。

f4断层倾向3°∠21°,断层带特征以花斑状的断层岩、碎裂岩为主,少量角砾岩。断层带厚一般5~10m。沿断层带地表溶蚀成小溶洞。

表2—5 隘口水库坝址地层简表

2.3.2坝址岩溶发育特征

坝址区主要岩溶形态有岩溶峡谷、溶蚀洼地、落水洞、暗河、岩溶泉。

坝址左岸有Kw1、Kw2及Kw3系统。右岸有Kw14、Kw12、Kw51系统。右岸凉桥河侧有神仙洞系统。右岸坝线下游有W103系统。

左岸的P1、P3硐,岩溶发育的主要特点一是沿卸荷带发育岩溶,另一个是沿Kw2系统岩溶发育。右岸P2硐,卸荷带宽36.60m,岩溶强烈发育,硐尾的K5溶洞,填厚>4.0m,充填软泥夹砂,成硐困难。高程512m的P4硐,揭露硐长全部在卸荷带中,不能自稳而整体坍塌。

坝址区河床及右岸溶洞平均直线率为12.78~10.84%,岩溶强烈发育;左岸溶洞直线率较低为5.59%,岩溶呈相对孤立的管道。

坝址区钻孔,遇见溶洞370个,累计溶洞高度460.09m,平均溶洞直线率10.25%;溶蚀裂隙499条,平均100m有11.11条。

设计对心墙堆石坝轴线及两岸防渗线进行物探,其成果:

钻孔声波测试完整岩体时Vp>5680m/s、较完整岩体Vp=4860~5680m/s。溶隙及小溶洞发育的岩体Vp值平均为2540~4860m/s。溶洞段Vp一般在1650m/s左右。

强岩溶层:∈3m、O1t1、O1t3、O1h;

弱岩溶层:∈3h,右坝肩及上游ZK7、H11孔附近受断层影响为强岩溶层;隔水层:O1d、O1t2。

对堆石坝坝基基岩面以下0~30m共42个钻孔中溶洞充填物统计,坝基基岩面以下0~30m溶洞物质填充率79.72%,坝轴线上溶洞物质填充率77%。

四、岩溶发育的方向及规模

左岸各岩溶系统主通道大致与岩层走向一致。河床基岩∈3m1岩溶发育的方向与河流流向近乎一致,右岸岩溶发育的方向既顺岩层、断层的走向,又顺岩层的倾向方向发育,

从坝址钻孔统计来看,>10m溶洞有4个,占溶洞总个数的1.1%;10~5m溶洞有16个,占溶洞总个数的4.3%;溶洞高度<3m的占绝大部分,约占溶洞总个数的91.9%,其中<0.5m的溶洞164个,占溶洞个数的44.5%。

五、岩溶发育程度的大致分区及岩溶发育深度

(一)左岸在H41孔一带溶洞底板高程低于500m。

(二)左岸公路上下溶洞底板高程480m~490m。

(三)坝基坐落在∈3m1层上,岩溶强烈发育,溶洞发育由于受层位控制,最低高程在380m以上。

(四)河床坝基及左岸坝肩深部为∈3h层,岩溶发育最低一般在330~370m,少数达到308.07m。

(五)王家坟洼地以东正常蓄水位以下∈3h和左岸及左河槽深部∈3h岩溶发育弱。

2.3.3坝址水文地质特征

经勘探证明两岸钻孔地下水位一般都高于河水位,坝址两岸有暗河及泉水,均为地下水补给河水。连通试验证实右岸地下水主要运动方向是由东向西补给。

坝址两岸及河床对设计蓄水位以下34个深孔基岩共进行646段压水试验。其中左岸共进行186段压水试验,反映坝址左岸岩体透水性中等,河床岩体透水性强烈,其中∈3m层又比∈3h层岩体透水性强烈;右岸岩体透水性比河床更强烈。强透水下限高程与溶洞下限高程基本一致。深部∈3h少量小溶洞填泥透水性弱。

2.3.4物理地质现象

经地表测绘及平硐探测,左岸水平卸荷带深度20~39m。右岸强烈卸荷带水平深20m,弱卸荷带水平深37m。右岸隘口中学变形体位于右坝肩偏下游,体积约1×104m3。清除表层溶蚀填泥及松散岩块后,可作为坝基。左岸危岩体为向北东及南东两侧临空的山体。危岩体底部高程在326国道以上(即515~535m),最高点高程约620m。危岩体稳定主要由外倾结构面L4溶蚀裂隙控制,目前基本处于稳定状态,建议清除危岩体表面的松动岩体,施工期间对危岩体进行监测,如有变形扩大趋势,采取锚固等工程措施。

坝址区的软弱夹层主要见于平硐中,地表未见明显的软弱夹层面。部分风化填泥或溶蚀夹泥,甚至有溶洞发育。这些夹层对堆石坝方案影响较小。

2.3.6岩石(岩体)物理力学性质

岩体物理力学参数建议值见表2—6、表2—7。

表2—6 隘口水库岩石岩体力学指标建议值表

表2—7 隘口水库岩石物理指标建议值表

2.3.7岩体基本质量

右岸及河床除Ⅰ坝线坝基H12、H10孔一带岩体基本质量为Ⅲ级外,其余绝大部分岩体基本质量为Ⅳ级,与岩溶直线率>10%的范围基本一致。左岸大部分岩体基本质量级别为Ⅱ级。

2.3.8主要工程地质问题

根据设计提供的资料隘口水库工程坝址主要工程地质问题是:

坝基、坝肩岩溶渗漏问题:包括水库内Kw2 、Kw3系统的岩溶渗漏;河床坝基岩溶发育强烈,溶洞直线率达23.23%,溶隙直线率21.33条/100m;尤其是沿河床、右岸坝肩深部岩溶渗漏问题;

另一个是岩溶地基稳定问题:坝基或其它建筑地基中溶洞强烈发育,承受荷载后可能引起岩溶塌陷,影响坝基稳定。

3、沥青砼心墙堆石坝施工方案

本单位工程特点:分部工程项目多,是枢纽工程的重点,本单位工程施工的特点难点就是本枢纽工程的重点难点,主要表现为:

1、工程量地质条件异常复杂:水库Kw2 、Kw3系统的岩溶存在渗漏问题,右岸存在绕坝渗漏问题,河床坝基岩溶发育强烈,溶洞直线率达23.23%,溶隙直线率21.33条/100m。

2、施工工期短:本单位所有工程按计划要在2008年12月份完成。由于临时工程→坝基开挖→固结灌浆→帷幕灌浆→基槽混凝土浇筑→大坝填筑→坝面处理这一关键线路,各工作互为紧前紧后工作,没有搭接工期,其中灌浆平洞开挖、灌浆和大坝填筑这两项工程费时很长,还有时间节点控制,因此工期很紧。

3、施工场地狭窄:坝址河谷宽度约230m,临时工程建设过程中,要同时开展围堰填筑、导流明渠开挖、导流隧洞开挖,相互干扰很大;

4、水库坝址位于岩溶特别发育地区,坝基和坝肩两侧存在岩溶、破碎带,设计采取了7.8万m固结灌浆、12.7万m的帷幕灌浆的处理措施。灌浆工程、沥青混凝土心墙是本工程的重点。

根据隘口水库枢纽工程的特殊现场情况,本枢纽工程的临时工程、各主体单位工程穿插施工。本单位工程的施工流程计划为:

沥青砼心墙堆石坝施工流程图

3.2施工主要材料及水、电的供应方案

(一)水泥、钢筋、木材

水泥、钢筋、木材等建筑材料和施工油料都可以在秀山县购买,特殊物资需要到黔江市购买。

两河口料场距坝址上游600m,储量约1×104m3。料场位于水库淹没线以下,开采条件好,质量能满足要求,运输方便。

(三)块石、碎石、砂料

块石料从平江河左岸干洞,距坝址0.8km的已规划好的石料场开采。料场岩性为O1h深灰色结晶灰岩,厚58.5m。灰岩重度26.4kN/m3,含水率0.22%,平均湿抗压强度60.8MPa,属坚硬岩类。岩石质量满足工程要求,剥离层按3~5m考虑,剥离量约28×104m3,有用储量约420×104m3,完全满足工程需求,可作为工程主料场进行利用。

工程所需混凝土粗细骨料拟采用干洞料场O1h灰岩为原料加工。灰岩无碱活性反应。岩石质量、储量均满足要求,开采条件好,运输距离短,可作为人工骨料的料场。

与秀山县石油公司协议供应:石油公司在工地修建一座临时加油站,专对我工程施工供油来满足工程用油需求。

计划与隘口水库枢纽工程项目部协商,请秀山县电力公司在采石场安装一台630KVA的箱式压器(石料开采加工及照明用电)、左岸326国道桩号K27+300附近安装一台1000KVA箱式变压器(主要满足左岸平洞、支洞,坝基施工、灌浆及施工照明电力供应),右岸隘口中学安装一台旁630KVA变压器(右岸平洞、支洞、灌浆及照明用电);此外我单位还计划自备1—2台100KW以上的发电机备用电力等措施来满足施工用电。

供水:施工用水主要为基开挖处理、灌浆平洞、帷幕灌浆(基础防渗)、上下层帷幕搭接灌浆、心墙混凝土基础(含廊道)的空压机等冷却用水和支护用水,砂浆拌和、混凝土拌制用水,供水池设置在河床左岸,位置:导流明渠0+000对应的326国道旁,水池容水能力为200m3。再从水池引接至施工作业面。

其它零星接工作面附近的水源。

原则上按照枢纽工程施工组织设计文件的总体要求安排施工布置,再根据具体施工作适当的调整。

4.1块石、碎石、砂场

根据料场规划和设计提供的料场分布图资料分析,拟选取距坝址0.8km处的干洞料场为块石开采场和混凝土骨料加工。

本合同工程的混凝土总量约为64313m3,埋石混凝土44677 m3,沥青混凝土11643 m3,需混凝土骨料约为碎石98870m3,砂55290m3,块石约17000 m3,堆石填筑料约135.07m3,总需要量153万m3。料场石料储量为420万m3,足够本工程开采利用。

破碎与筛分设备选择:根据工期进度的初步设想,需建砂石筛分能力为140T/h以上的破碎与筛分系统,计算如下:

月采运能力:Q月=(QmA+Q0)Ks

式中:Qm:高峰期的月混凝土浇筑强度,取心墙基槽混凝土16735m3/月;

A:每立方米混凝土的骨料用量,选取2.20T;

Q0:其他砂石料月需用量(T),取2000T;

Ks:损耗补偿系数:选取1.27

得Q月=(16735×2.20+2000)×1.27=49298T

按每天二班开采计算,则小时开采能力为:

Qh= Q月/(14×25)= 49298/(14×25)= 141T/h

上述计算是无储备开采能力计算。由于本工程混凝土工程浇筑呈现间断施工的特点,事实上是可以进行一定的储备的。如果按照储备量8000~10000m3(17000~22000T)计算,最大小时开采能力只需71m3。根据以上计算分析,选择二台600×900反击式破碎机,碎石能力大于100T/h;选用一台SSZ21500×5500吊式直线振动筛,筛分机设4层筛网,分别为80×80mm筛网、40×40mm筛网、20×20mm筛网和5×5mm筛网,筛分能力大于100T/h,电机动率10kw。采用上述设备,砂石料预储备只需6500m3,就能够满足最大月浇筑强度的开采能力需要。

设备及场地布置:砂石料系统拟就近布置在干洞料场:集料仓设在现乡村公路上,其南部谷地用覆盖层开挖的弃料填平后作为堆料场。筛分系统、皮带运输系统、骨料破碎系统从低到高逐级布置,开采时从上至下逐层开挖。

首先采用挖掘机清除料场地表的植被、强风化石、表土等无用层,并将弃料用于场地填筑。然后根据开采方案做好开采准备工作和平面布置,包括布置供水系统和排水沟、沉淀池等。应该特别强调的是,如果上游洪水携带草垛、树木,堵塞排水暗管,谷地上游的拦水坝有可能会漫溢。为了防止水流对326国道的冲刷破坏,填土与公路路堤结合部位用块石过渡,过渡层厚度不得低于5m。路堤超出填筑层的坡面,用干砌块石护坡,护坡高度1m。

石料经爆破开采后,对超径石予以解小,并就地初选,将符合砌筑块石要求的石料分拣开来堆放,运至工地作为砌筑块石。其他石料采用1.0m3液压反铲挖装、5~8T自卸汽车运至破碎机地垄卸料处,作为碎石和砂的原料。骨料筛分后分别由皮带机运送至储料仓内,按不同规格分别堆放。

砂石料的清洗采用离心清水泵IS50—32—125(Q=12.5m3/h,H=20,N=2.2KW)直供水方式从拦水坝前提水,供洗选机进行冲洗。

本工程堆石填筑量约为130万m3,料场与上述混凝土骨料厂相同。按照工期安排,大坝填筑工期为13个月,大坝填筑前开始生产,则平均月用量10万m3。考虑大坝填筑在开工后第二个汛期前必须达到521m高程,因此,填筑任务呈现前紧后松的态势,月填筑不均匀系数约为1.4,考虑生产不均匀系数1.3、耗损率5%,则实际最大月开采强度达到19.1万m3。这样的开采强度显然难度较大。因此,填筑料必须预储备一定数量。

由于大坝填筑在开工后约10个月才能施工,计划2个月的准备期,则可以用于堆石料开采的时间为21个月,月平均开采强度为6.1万m3。按生产不均运系数1.3、耗损率5%计算,月均开采强度为8.3万m3。也就是说,堆石料预储备量为8.3×8=66万m3,并且填筑施工期月开采能力必须保证在9万m3左右。

本合同工程混凝土用量为98300m3,最大月混凝土浇筑强度为混凝土心墙基础16735m3/月,其中有约近1万m3的混凝土不在搅拌站生产,生产能力Qh按下式计算:

Qh= KhQm/(20×25) =30m3/h

其中:Qm:最大月混凝土浇筑强度 取:15032m3/月

Kh:小时不均匀系数 取:1.3(高峰期各浇筑块台班浇筑强度)。

混凝土拌和系统选择根据以上计算,并充分考虑混凝土浇筑高峰期仓面大小等不均衡性,拟采用一台JSY500型搅拌系统生产混凝土,生产能力为27.5m3/h。在主施工期,计划再增加一台搅拌机以满足高峰用砼需求。

二、混凝土拌和系统布置

混凝土拌和系统原计划布置在隘口中学东北面的农田上,根据实际现场情况,改在坝址下游左岸矮明沟与左岸干洞之间326国道下,先大坝开挖弃料堆填,整平、碾压,并形成堆料平台(上)与出料平台(下)。隘口中学东北面的农田上布置灌浆队、土石方工程队等施工队营地和砼预制场。

拌和系统内布置有碎石、砂料堆场,水泥仓库,均布置在堆料平台上,堆料平台具备贮备1 周的用量砂石料的能力,水泥仓库贮备力能为300~500T。出料平台与堆料平台高差为4m,平台上布置搅拌设备,搅拌站的配料机仓面与堆料平台处于同一高度,按设计配合比配合好混凝土干料后通过自动输送设备输送至搅拌机。砼运输车从搅拌机的后面龙门架下接料后运至施工点。

(一)砂石料筛分场的砂石料成品料,用ZL—50装载机装15T自卸汽车运到拌和站的配料仓,再由自动称量斗自动送入到混凝土搅拌机。

(二)水泥:拌和站旁设贮量为200T水泥仓库,采用螺旋输送机输送水泥到自动称量斗,再送到配料斗后进入混凝土搅拌机。

(三)外加剂:所有外加剂均应根据说明书和现场试验确定掺量,通过外加剂池稀释到要求浓度,由酸碱泵送到储箱(桶),再经称量装置送到混凝土拌和机内。

(四)水“根据混凝土试验及现场调整配合比确定的拌和加水量,由程控系统控制流量泵进行加水。

混凝土预制厂紧邻混凝土拌和系统布置在所征用的农田上。由于场地有限,预制块成品无法堆放在该厂地上。在下游围堰外设计有一个三角形平台,大坝开挖期间将平台填筑超高2m左右,平台平整后作为预制块成品堆场。其堆料功能完成后削平,余土填筑坝下游平台。

4.3模板与金属加工工厂

在操场北沿,原隘口中学老师办公房后新建一排平房,砌一个场地作为加工厂。

根据施工组织总设计,营地布置表如下(引自施工组织总设计,各施工期需求可能不一样,部分建筑功能需要随时调整)。

在导流明渠和导流隧洞开挖阶段,多余的砂砾石料通过左岸临时道路运至弃料场。临时道路为双车道,面宽10m,路面要求能够通过20t自卸汽车。该道路长度500m。

导流隧洞过水、导流明渠形成后,大坝开挖运输道路为:如果开挖阶段施工区民房搬迁,右岸乡村道路经过扩宽后也可以作为施工道路,道路标准相同。新修道路230m,改造道路400m。

大坝左岸与导流明渠平行设置一条施工道路,大坝右岸,从原隘口中学操场中间的一条施工道至卸料场。施工道路面宽8~12米,平直段坡度不大于10%(转弯处不大于5%),路面为泥结碎石。基坑内支线施工道采用跳板铺设,路面宽3~4m,呈环形铺设。

二、灌浆平洞及支洞施工道路

左岸上层平洞借用326国道(单边通车)为施工出渣道路、中层平洞以溢洪道为施工出渣便道至出渣场,中层平洞沿溢洪道斜向修一条便道至高程517.89m出渣口,下层平洞以2#支洞为出渣便道至出渣场,2#支洞以现有导流隧洞出口出渣道路为施工道路,1#支洞从山坡510.99m处斜向修一条道路至导流明渠,以明渠为施工出渣道路至出渣场。右岸上、中层平洞以右岸上坝公路为出渣道路,下层平洞以4#支洞为出渣道路,4#支洞以左岸山坡脚下公路(原乡村公路)为出渣道路,3#支洞修一条斜坡接上坝公路,出渣从此公路出入。出渣公路同时也是洞身衬砌材料运输通到。

四、大坝填筑堆石料运输道路

大坝520m高程以下部分的填筑料运输道路为:料场→改线乡村公路→326国道→临时道路下至河谷底部→跨河→右岸乡村公路→上(下)坝道路→填筑区,运输距离1km,新建施工道路400m。道路标准同上。当大坝达到一定高程后,右岸上坝道路就不得使用营区内道路和现有乡村公路了,必须沿项目部东面山坡修筑一条临时施工道路,与大坝连接处必须随着大坝升高而不断调整。新修施工道路600m,道路标准同上。

大坝基础灌浆设备及材料运输通道利用大坝填筑道路。

上层灌浆平洞的帷幕灌浆利用洞身衬砌时材料运输通道。

中层,下层灌浆平洞则分别利用1#、2#、3#、4#号支洞为运输通道。

按照工期安排,坝基开挖需要在第一个汛期施工,只要做好暴雨洪水预报,及时回避较大洪水,汛期施工还是可行的。由于大坝填筑跨越第二个汛期,因此,弃料运输和堆石料运输都可能在河道流量较大时施工,且必须跨河运输。拟在弃料场南头修建一座临时施工桥梁,桥梁设计荷载汽30t。拟采用钢筋混凝土简支平桥结构,桥面宽5m,桥面高程485.5m。

2、坝基开挖平面布置图

3、填筑堆石料平面布置图

本单位工程施工进度计划原则上遵照施工总进度计划的安排施工,但本单位的实际情况和施工环境情况,做具体的调整。

5.1施工进度总进度计划要求

(1)固结灌浆试验:2006年12月下旬开始TB/T 3355-2014标准下载,至2007年1月中旬完成试验;

(2)帷幕灌浆试验:2007年1月初开始,至2007年2月中旬完成试验;

(3)大坝基础开挖:从土石方设备进场开始陆续进行至4月30日完成大坝开挖与坝肩处理;

(4)大坝固结灌浆:2007年4月1日至8月31日;

(5)大坝帷幕灌浆:2007年7月1日至9月30日;

T/CSSG 001.3-2020 市域网格化治理标准体系建设指南 第3部分:标准体系.pdf.pdf(6)灌浆平洞开挖与衬砌2007年2月1至2008年2月1日;平洞帷幕灌浆2007年10月15日至2009年1月31日;

(7)沥青砼碾压试验、堆石坝碾压试验:2007年8月1日至2007年8月30日

(8)大坝填筑(大坝堆石体堆筑、大坝过渡层、沥青砼心墙浇筑):2007年9月1日至2008年12月20日。其中要求2008年5月1日(汛前)前填筑达到黄海高程516.5m高程,实现2008年大坝具备挡水能力;

©版权声明