0021 厦门海底隧道施工组织设计

0021 厦门海底隧道施工组织设计
积分:20
特惠
VIP全站资料免积分下载
立即下载
同类资料根据编号标题搜索
文档
仅供个人学习
反馈
文件类型:.rar
资源大小:3.65 MB
资源类别:施工组织设计
资源属性:
会员资源

施组设计下载简介:

内容预览随机截取了部分,仅供参考,下载文档齐全完整

0021 厦门海底隧道施工组织设计

场区基岩以燕山早期第二次侵入的花岗闪长岩及中粗粒黑云母花岗岩为主,海域为花岗闪长岩分布区,XX侧潮滩及其以北地带为黑云母花岗岩分布区。其内穿插二长岩、闪长玢岩、辉绿岩(玢岩)等岩脉,脉岩以辉绿岩最为多见,多沿本场区最为发育的近南北向及北北东向高角度裂隙侵入,脉宽一般不足1米,个别部位宽达10~20米。

基岩按风化程度可分为全、强、弱、微四个风化带,各带特征如下:

微风化岩破碎带:颜色与原岩基本相同。多分布于风化槽轴线附近,岩体被三组以上构造裂隙切割,裂隙间距小于20cm,岩体被割成碎石状,岩质仍较硬,少数裂隙内存在碎屑物,一般呈高角度带状产出。

2.5.3不良地质或特殊工程地质问题

场区不良地质现象主要是海岸坍塌及红土台地水土流失现象YD/T 3349.3-2018 接入网用轻型光缆 第3部分:层绞式.pdf,对本工程影响不大。

海域范围内普遍沉积了全新世松散砂土及海积软土,软土层最厚处可达10米左右;海底饱和中细砂及软土在Ⅶ度地震力作用下可产生液化或震陷现象,但这两类土体对暗挖隧道无影响。丘间洼地局部发育全新世软土(淤泥质亚粘土或泥炭质土),在路堑开挖或路基填土工程中,容易引起变形破坏。

③深厚全~强风化层及风化槽

场区陆地及潮间带基岩全~强风化带厚度较大;在海域几条构造破碎带处全~强风化带异常深厚,而形成风化深槽,此类全~强风化岩体强度低、自稳能力差,易发生渗透破坏,该类岩体对暗挖隧道工程来说属不良岩土;在深槽内钻取了裂隙密集及碎裂结构岩芯,在另外2个微风化岩体埋藏很浅的孔内也揭示了小规模的构造裂隙密集带。

从应力角度对该隧道洞身段进行岩爆预测分析认为该隧道在施工期无岩爆现象发生。

(建议删除:本合同段主要不良地质为陆域及浅滩段全强风化带、砂砾层、穿越海域段风化深槽等。此类全~强风化岩体强度低、自稳能力差,在极端地质条件下,存在发生渗透破坏的可能,其中全、强风化二长岩脉因高岭土矿物含量较高,具弱膨胀潜势,其它全、强风化岩不具膨胀性,但不排除局部段因高岭土矿物含量较高而具弱膨胀潜势。)

2.5.4工程地质条件评价

工程区域基岩以燕山早期第二次侵入的花岗闪长岩及中粗粒黑云母花岗岩为主,海域及五通岸为花岗闪长岩分布区,XX侧潮滩及其以北地带为黑云母花岗岩分布区,其内穿插二长岩、闪长玢岩、辉绿岩等岩脉,脉宽一般不足1米,个别部位宽达10~20米。基岩按风化程度可分为全、强、弱、微四个风化带,局部发育风化深槽,对隧道有较大影响。

工程场区总体地质条件较好,主要不良地质现象包括:隧道两端洞口段全强风化花岗岩层,海域F1、F2、F3三处全强风化深槽,海域F4全强风化囊。

为了确保隧道施工时安全穿越海域不良地质地段,对海域风化槽与风化囊进行了专题研究。研究内容包括:分布状况、岩体力学性质、渗透性能、渗水状况等,主要结论如下:

(建议删除:场址处于本区域相对稳定的厦门——同安弱断隆区,场区陆地为剥蚀残留的微丘(岗地)浅谷地貌,坡度平缓,场地稳定,此处又是浔江最窄部位,适宜工程建设。

2.5.5地震及区域稳定性

根据地下水含水层所处的平面位置及性质,场区地下水可分为陆域地下水和海域地下水两段:

分布于陆域范围内地层中的地下水,据其赋存形式分为松散岩类孔隙水、风化基岩孔隙裂隙水、基岩裂隙水三种,均为潜水。其中松散岩类孔隙水赋存于第四系残积层中,风化基岩孔隙裂隙水赋存于基岩全~强风化层中,基岩裂隙水赋存于弱微风化基岩的风化裂隙及构造裂隙隙中。陆域地层中除可能存在的富水性好的基岩破碎带外,均为弱富水,渗透性较差,属于弱或微含水层。陆域地下水主要受大气降水的补给,就近向低洼地段排泄,总体上属于潜水,仅局部洼地(如西滨隧道出口处)因上覆土层中含大量高岭土的粘土相对隔水层,地下水具承压性,但承压水头是变化的,干旱季节承压转为无压。

主要指海域范围内地层中的地下水,据其赋存形式分为松散岩类孔隙水、风化基岩孔隙水及基岩裂隙水三种,其中松散岩类孔隙水赋存于第四系全新统海积层中,风化基岩孔隙裂隙水赋存于基岩全~强风化层中,基岩裂隙水赋存于弱微风化基岩的风化裂隙及构造裂隙隙中,海域地层中除海积的砂层(主要赋积在10+900以东西滨滩涂地段)及可能存在的富水性好的基岩破碎带外,总体上富水性弱,渗透性较差,为弱为含水层;海域地下水主要受海水的垂直入渗补给。

2.6.2地下水动态及补、迳、排条件

松散岩类孔隙水:地下水的动态受气候、地形的影响明显。地下水水位变化随降雨的频弱,变化剧烈,且有滞后现象。随地形的变化,地下水水位变化很大,水位变幅一般在0.33~4.0m。5~6月份水位最高,12月至翌年2月最低。大气降水是地下水的主要补给源,降水垂直入渗后,由高处向低洼处迳流,所以低洼处孔隙水除受大气降水的直接入渗补给外,还受侧向迳流的补给。局部受岩性影响略具承压性。松散岩类孔隙水除蒸发、人工抽取排泄外,多排向沟溪、河流、入海,少部分入渗补给下部弱含水岩组。

全~强风化岩层孔隙裂隙水:与松散岩类孔隙水实为一层地下水,两者间并无明显隔水层存在,全~强风化岩层孔隙裂隙水直接受上部松散岩类孔隙水的下渗补给,然后又缓慢的迳流或侧向补给基岩裂隙含水岩组。

基岩裂隙水:除出露地表者可直接接受大气降水的入渗补给外,隐伏型均受其他类型地下水的入渗补给,其迳流严格受裂隙形态控制,呈层状或带状,有时互不连通,无统一水面。

其动态和补、迳、排条件,均较陆域简单,三种地下水类型之间,均无隔水层存在,可视为一个无限厚的弱含水层,因同位于海水之下,均受海水的垂直入渗补给,仅隐伏于下部的含水岩组接受上部含水岩组的入渗补给或越流补给。

2.6.3地下水的侵蚀性

陆域地下水浅部一般为中性淡水.PH值在664.7.t5间,但受所处环境的影响,变化较大。其矿化度和水化学类型具分带性,从远离海域到近海区矿化度由小变大,

依据《岩土工程勘察规范》(GB50021—2001)12.2.4、12.2.5条判定,陆域地下水对钢筋混凝土结构中的钢筋无腐蚀性、对钢结构具弱腐蚀性。

依据《岩土工程勘察规范》(GB50021—2001)12.2.4、12.2.5条判定,海域地下水对钢筋混凝土结构中的钢筋具弱腐蚀性、对钢结构具中等腐蚀。

2.6.4岩土层渗透系数

岩土层的渗透性指标的确定通过现场水文地质试验(抽水、压水)和室内试验(渗透系数、渗透破坏)获得。

测区内全强风化岩层为各向同性,为松散孔隙介质。基岩裂隙水属裂隙介质体,为各向异性不连续体,受结构面的控制。岩体在各个方向上的渗透系数不同,采用裂隙样本法进行等效化处理。当隧道完全置于全、强风化岩体中时,在渗透压力下,隧道存在发生渗透破坏的可能性。本合同段范围内岩土层渗透系数见表2.6.1。

表2.6.1岩土层渗透系数统计表

陆域暗挖隧道最大涌水量(Q01、Q02)及正常涌水量(Qs)分段计算见表2.6.2。

海域段最大涌水量见表2.6.3。

表2.6.2陆域暗挖隧道最大涌水量及正常涌水量分段计算表

YK12+255~YK12+370

YK12+370~YK12+410

表2.6.3海域段最大涌水量计算表

YK9+700~YK10+630

YK10+630~YK10+725

YK10+725~YK10+980

YK10+980~YK11+095

YK11+095~YK11+265

YK11+265~YK11+530

YK11+530~YK11+715

YK11+715~YK12+255

本合同段主要工程数量见表2.7.1。

表2.7.1主要工程数量表

主要工程数量表可能漏项较多,建议补充“通风竖井”、“洞口建筑”、“接线部分”。

隧道部分建议补充“垂直高压旋喷注浆(Φ60mm)”、“HRB335、HPB235衬砌钢筋”、“止水带、止水条”、“防火涂料”、“***装饰板”等。

工程特点、重点、难点及关键辅助措施

建议根椐下列参考资料修改:

(1)通过深水进行海底地质勘察比在地面的地质勘察更困难、造价更高、而且准确性相对较低,所以遇到未预测到的不良地质情况风险更大。

(2)很高的渗水压力可能导致水在有高渗透性或有扰动区域或与开阔水面有渠道相连的地层中大量流入,特别是断层破碎带的突然涌水。因此必须加强施工期间对不良地质和涌水点的预测和预报。

(3)很高的孔隙水压力会降低隧道围岩的有效应力,造成较低的成拱作用和地层的稳定性。

(4)海底隧道不能自然排水,堵水技术是关键技术。先注浆加固围岩,堵住出水点,然后再开挖。在堵水的同时加强机械排水,以堵为主,堵抽结合。

(5)衬砌受长期的较大的水压作用。

(6)由于单口连续掘进的距离很长而导致工期很长,投资增大,因此必须采用能快速掘进的设备。

(7)海域的风化槽/囊段、浅滩的全、强风化段,围岩软弱,自稳能力弱且富水,施工中稍有不当就可能引起大变形、坍塌甚至突涌水。

(8)隧道结构长期处于海水的包围之中,如何做好隧道的防排水涉及隧道的安全性、可靠性和建设投资;并且海水对混凝土、注浆材料、钢筋和防水材料具有较强的腐蚀性,做好隧道的防腐蚀也关系到隧道的耐久性和运营安全。

在海底岩层中爆破开挖隧道,系头顶海水作业,最突出的问题是怕“通天”,海水泄漏到隧道中,且隧道开挖跨度大,不良地质段长,因而施工中风险大,必须严防涌水、塌方的发生。

海底隧道工程,上受海水威胁,下受地下水的影响,工程所处的环境较为恶劣,因此工程技术标准要求很高,砼耐久性为100年,衬砌做到不渗不漏,技术难度很大。

3.1.3出渣排水困难

本合同段隧道坡度为0.54%和2.90%,下坡施工,出渣运输为重车上坡,特别是通过竖井施工时,洞渣和废水均需由竖井吊运,施工较为困难。

3.1.4环境保护要求高

厦门为全国著名的海滨旅游城市,风景优美,地域特色明显,施工海域中生活着中华白海豚和文昌鱼。因此,工程施工对环境保护要求很高。

3.1.5不良地质问题突出

本标段浅滩及陆地段基本处于全、强风化花岗岩地带,隧道跨海部分穿越F3风化深槽,地质条件复杂,本标段隧道全长2810m中V级围岩长1395m,占50%。

由于本标段隧道不良地质突出,Ⅳ、Ⅴ级围岩段总长1770m,占隧道全长的63%,施工将占用大量时间,而隧道施工工期仅36个月,较为紧迫。

(1)隧道地质上的难点工程为海底部分穿越风化深槽地段,此类全~强风化岩层强度低,自稳能力差,甚至存在发生海水渗透破坏的可能。

(2)隧道浅滩段,大部分处于全~强风化带,地质条件差,围岩级别为Ⅴ级,长度达1203m,成为进洞工程的拦路虎。

(3)YK11+930~YK12+080段隧道顶部可能出现透水性砂层。采用地表高压旋喷注浆处理。此类工程带有创新意义,施工难度大。

(5)行车隧道的结构特点是跨度大,三车道的隧道其最大开挖宽度为16.84m(Ⅴ级围岩衬砌,未考虑超挖),由于隧道跨度大、面积大,施工开挖后,围岩压力和地层变形会明显增大,因而施工难度随之增加。

(6)海底隧道的最大的难点就是在施工中可能发生突水,防止突水的关键仍然在隧道穿过风化深槽及其他不良地质地段时,避免海水渗透破坏,做到万无一失。

(建议删除:(1)隧道陆域及浅滩地段基本处于全、强风化岩地带,部分地段为砂层,围岩强度低,在地下水位以下自稳能力差,对水的侵透作用十分敏感。保证该段隧道施工的安全和快捷非常关键。)

(2)隧道穿越海底F3风化深槽,里程为10+689,岩体主要为全、强风化花岗岩,层理裂隙发育,施工中要严防塌方和突水的发生,因此施工难度和风险相当大,安全穿越是本隧道施工的难点。

1)安全、快速、均衡地组织施工

本标段隧道全长2810m,其中Ⅳ、Ⅴ级围岩长1770m,占隧道总长的63%。并且海域段内含有82m的风化槽,施工非常困难,容易发生坍方和涌水。而工期要求只有36个月,因此施工中如何保证快速、安全、均衡施工是本工程的重点之一。

2)结构防水和衬砌混凝土的质量控制

本工程设计使用年限为100年,而隧道地处海底,施工环境差,如何保证隧道施工的防水质量和衬砌混凝土的施工质量是隧道能否达到百年使用年限的关键,也是本工程的重点之一。

3)浅滩地段安全、快速施工

本工程浅滩段长1187m,大都处于全、强风化花岗岩地段,且节理发育,易坍方,施工措施复杂,施工进度慢,施工时间长,如何安全、快速穿越浅滩地段是本工程的难点之一。

4)风化槽地段的安全、快速施工

本标段风化槽段长82米脚手架工程施工组织设计方案,处于全强风化花岗岩层且节理发育,易坍方,有涌水的可能性且地处海底,是本工程最大的风险地段,如何安全穿越该段,是本工程的重中之重。

(1)隧道超前地质预测预报

通过深水进行海底地质勘察比在地面的地质勘察更困难、造价更高、而且准确性相对较低,所以遇到未预测到的不良地质情况风险更大。在海底隧道施工中,由于前方地质情况不明,常常出现各种险情,有时出现塌方、突涌水等毁灭性地质灾害。因此,必须寻求一种切实可行的办法来超前探明隧道前方的地质情况,过去国内常常采用平行导坑、超前导坑等办法超前探明前方的地层情况,这种方法往往造价较高,目前地质预测大约有下列几种方法:

1)地质画像系统,即采用数值相机摄取隧道掌子面的地质数据,对该地质数据进行三维地质分析,从而预测隧道掌子面前方10m以内的地质变化。

2)应用应力波探测隧道前方工程地质条件。

星级酒店安装工程施工组织设计3)采用地质雷达技术探测前方的地层情况。

©版权声明
相关文章