0066 厦门海底隧道施工组织设计

0066 厦门海底隧道施工组织设计
积分:20
特惠
VIP全站资料免积分下载
立即下载
同类资料根据编号标题搜索
文档
仅供个人学习
反馈
文件类型:.rar
资源大小:3.21 MB
资源类别:施工组织设计
资源属性:
会员资源

施组设计下载简介:

内容预览随机截取了部分,仅供参考,下载文档齐全完整

0066 厦门海底隧道施工组织设计

道路1/100、隧道1/300

工程场址位于厦门岛东北侧,地貌单元属闽东南沿海低山丘陵——滨海平原区。

隧址区陆域为风化剥蚀型微丘地貌,地势开阔平坦,主要为残丘——红土台地,丘顶高程20~35m,丘体多呈椭圆体,坡度和缓。丘间洼地高程一般5~15m,沟、塘较多。海滨局部为全新世冲海积阶地,地面高程一般2~5m,略向海边倾斜。海岸带为海蚀海岸及堆积海滩地貌,岸线曲折,岸坡以土质陡坎为主,坎高7~20米,部分地段坎底基岩裸露。西滨岸为堆积海岸,海滩宽阔,滩面被浮泥覆盖,被辟为海产养殖场。

隧址区海域约4200米,西滨侧水下岸坡平缓,一般水深15米,海底平坦,渐升至出露。

陆域段占地为鱼塘和农田湖南某教学楼工程施工组织设计,对沿线村庄的影响有限。

场区陆域没有河流,大气降雨靠丘(岗)间沟谷排泄流入港湾或海中。区内小型水体较多,池塘遍布。地表水及地下水对混凝土无腐蚀性。

厦门水路运输发达,是天然良港,(建议删除:五通港、刘五店港规划有万吨级深水泊位货运码头);鹰厦铁路、福厦公路与全国铁路、公路形成网络,XX岸XX大道一期工程基本贯通,交通较为发达。场内施工时,可就近修筑施工便道连接至施工地点。

厦门地区属亚热带海洋性气候,冬无严寒,夏无酷暑,四季如春。年均气温20.8℃,极端最高气温为38.4℃,极端最低气温2℃。每年2~8月为雨季,年均降雨量1143.5mm,主要风向为东北向,次为东南向,9月至次年4月为沿海大风季节,多为东北风,平均风力3~4级,最大8~9级。7~9月为台风季节,风力7~10级,最大可达12级,最大风速60m/s。

2.5.1区域地质概况

厦门地区所处大地构造单元为闽东中生代火山断拗带(二级构造单元)之闽东南沿海变质带(三级构造单元)。在此构造单元内,对隧址区地质构造具有控制意义的断裂构造为长乐一诏安断裂带和九龙江断裂带。

长乐一诏安断裂带位于东南沿海丘陵地带,呈北东向平行海岸线展布,北起闽江口,经长乐、惠安、泉州、厦门、诏安,向南延伸至广东南澳、惠来入海,长约450km。

该断裂带由一系列近于平行、长短不一的断层组成,带宽38~58km。该断裂带上地震活动较弱,最新活动年代为晚更新世早期。

九龙江断裂带分布于厦门、漳州和南靖等地,走向北西至东西,由二到三条次级断裂组合而成,长120km以上。断裂形成于晚侏罗世,沿断裂片理化、糜棱岩化现象明显。在晚第四纪时期,该断裂某些地段有较强活动,扭断水系,断错上更新统。此外,沿断裂带也是地热异常带,发生过多次5~6.5级地震。

本次海域地震反射勘探发现数条轴向测线均有三条强风化基岩深槽,呈北西及近南北向展布,F1走向北西276。,F2走向北西304.5。,F3走向北西345.5。,经钻孔验证,强风化层深厚,部分岩芯可见密集的高角度裂隙及碎裂特征。

2.5.2场区岩土特征

地质调绘和钻探揭示,勘察场区地层主要为第四系覆盖层及燕山期侵入岩两大类。

第四系地层以侵入岩残积土为主,其次为上更新统冲洪积、以白色基调为主的粘性土(当地称白土)和粘土质砂,少量全新世种坡积或海积砂土、粘性土、淤泥等。

侵入岩残积土水平方向较为均一,垂直方向则显示出不甚明显的分带现象,本区残积土一般可分为上、中、下三个带,即棕红色粘土带、棕红杂灰白花斑色亚粘土带、灰白色砂质或砾质粘性土带,此类土在丘顶处薄,丘体边缘较厚,厚度一般5~15米。

上更新统白土主要分布于丘间洼地,层厚变化大,最厚处可达20米左右。全新统主要分布于海域及堆积潮滩地带,少量分布于丘间洼地表部。

各类土体特征及分布情况如下:

①填筑土(Q4me):多为杂填土,局部为素填土,结构疏密不均,西滨岸仅以海堤、塘埂、路堤等形式出现。

全新世海积淤泥或(Q4m):灰色~灰黑色,含贝壳碎片,土质均匀,粘性较强,流动~流塑状,局部混少量砂;主要分布于港湾及沿海潮间带,陆域沟、塘中有少量分布。场区潮滩前缘地带此类土较厚,钻孔揭示最厚处达6m左右。

全新世海积砂类土(Q4m):多呈灰色,局部呈浅黄色,多为中、粗砂,结构松散,成份以石英为主,分选性差。局部含较多泥质和贝壳碎片,呈淤泥混砂状(1);主要分布于海岸边及浅海暗礁群内,厚度一般不超过7米。

上更新世冲洪积粘性土及粘土质砂(Q3a1+p1):此类土以白色为主基调,残丘边缘过渡为棕黄杂灰白色,以砂质粘性土为主,某些深度可出现细腻的粘土夹层,硬塑~半干硬状。下部往往夹密实的粘土质中粗砂透镜体(1),该土层砂粒含量及粒径垂向变化大;海域中XX岸养殖场区XZKl5、XZKl6、ZTKl8、XZKl9~XZK21孔揭示的更新统冲洪积中粗砂局部含卵、砾石,最大粒径可达10cm左右,反映出山前古冲沟或古洼地的沉积特征。XX岸揭示该类土顶界最高点为4.88米(初勘ZSK5孔)。

第四纪残积层(Qe1):表部均为棕红色,往下过渡为棕红杂黄色、灰白色花斑状,以砂质粘土、亚粘土居多,硬塑~半干硬状,广泛分布于残丘台地,厚度多为5~10。

场区基岩以燕山早期第二次侵入的花岗闪长岩及中粗粒黑云母花岗岩为主,海域为花岗闪长岩分布区,XX侧潮滩及其以北地带为黑云母花岗岩分布区。其内穿插二长岩、闪长玢岩、辉绿岩(玢岩)等岩脉,脉岩以辉绿岩最为多见,多沿本场区最为发育的近南北向及北北东向高角度裂隙侵入,脉宽一般不足1米,个别部位宽达10~20米。

基岩按风化程度可分为全、强、弱、微四个风化带,各带特征如下:

全风化带(w4):全风化花岗闪长岩(1)及黑云母花岗岩(1)一般呈棕黄~灰黄色,含灰白色及褐色斑点,岩体己呈砂质粘土或砂质亚粘土状;全风化辉绿岩为灰黄含黑褐色细纹,呈硬塑~半干硬粘土状:全风化闪长岩为灰黄~浅黄色,岩体呈硬塑粘土状;全风化闪长玢岩多为紫红含灰白斑点,呈硬塑~半干硬粘土状;全风化二长岩多白色,含较多高岭土,呈硬塑粘土状。全风化带的厚度主要取决于其顶部受剥蚀程度,两岸普遍较厚,一般为10~30m,海域变化很大,浅海区该风化带几乎被冲刷剥蚀殆尽,但构造破碎带内仍可达30米左右。

弱风化带(W2):该风化带的主要特征是岩体被较多风化裂隙切割,风化裂隙一般追踪构造裂隙或原生节理发育,部分追踪低倾角裂隙,裂隙两侧数毫米~数厘米范围内的矿物风化成黄色,部分裂隙内充满填物或胶结物已风化为泥,岩块大部分仍保持原岩特征,仅边缘带变软。该风化带为强风化与微风化的过渡带,弱风化花岗闪长岩(3)厚度一般不超过5米,局部追踪构造破碎带可达很深部位;弱风化黑云母花岗岩(3)最厚处达30米。

微风化岩破碎带:颜色与原岩基本相同。多分布于风化槽轴线附近,岩体被三组以上构造裂隙切割,裂隙间距小于20cm,岩体被割成碎石状,岩质仍较硬,少数裂隙内存在碎屑物,一般呈高角度带状产出。

2.5.3不良地质或特殊工程地质问题

场区不良地质现象主要是海岸坍塌及红土台地水土流失现象,对本工程影响不大。

海域范围内普遍沉积了全新世松散砂土及海积软土,软土层最厚处可达10米左右;

海底饱和中细砂及软土在Ⅶ度地震力作用下可产生液化或震陷现象,但这两类土体对暗挖隧道无影响。丘间洼地局部发育全新世软土(淤泥质亚粘土或泥炭质土),在路堑开挖或路基填土工程中,容易引起变形破坏。

③深厚全~强风化层及风化槽

场区陆地及潮间带基岩全~强风化带厚度较大;在海域几条构造破碎带处全~强风化带异常深厚,而形成风化深槽,此类全~强风化岩体强度低、自稳能力差,易发生渗透破坏,该类岩体对暗挖隧道工程来说属不良岩土;在深槽内钻取了裂隙密集及碎裂结构岩芯,在另外2个微风化岩体埋藏很浅的孔内也揭示了小规模的构造裂隙密集带。

从应力角度对该隧道洞身段进行岩爆预测分析认为该隧道在施工期无岩爆现象发生。

(建议删除:本合同段主要不良地质为陆域及浅滩段全强风化带、砂砾层、穿越海域段风化深槽等。此类全~强风化岩体强度低、自稳能力差,在极端地质条件下,存在发生渗透破坏的可能,其中全、强风化二长岩脉因高岭土矿物含量较高,具弱膨胀潜势,其它全、强风化岩不具膨胀性,但不排除局部段因高岭土矿物含量较高而具弱膨胀潜势。)

2.5.4工程地质条件评价

工程区域基岩以燕山早期第二次侵入的花岗闪长岩及中粗粒黑云母花岗岩为主,海域及五通岸为花岗闪长岩分布区,XX侧潮滩及其以北地带为黑云母花岗岩分布区,其内穿插二长岩、闪长玢岩、辉绿岩等岩脉,脉宽一般不足1米,个别部位宽达10~20米。基岩按风化程度可分为全、强、弱、微四个风化带,局部发育风化深槽,对隧道有较大影响。

工程场区总体地质条件较好,主要不良地质现象包括:隧道两端洞口段全强风化花岗岩层,海域F1、F2、F3三处全强风化深槽,海域F4全强风化囊。

为了确保隧道施工时安全穿越海域不良地质地段,对海域风化槽与风化囊进行了专题研究。研究内容包括:分布状况、岩体力学性质、渗透性能、渗水状况等,主要结论如下:

(建议删除:场址处于本区域相对稳定的厦门——同安弱断隆区,场区陆地为剥蚀残留的微丘(岗地)浅谷地貌,坡度平缓,场地稳定,此处又是浔江最窄部位,适宜工程建设。

2.5.5地震及区域稳定性

根据地下水含水层所处的平面位置及性质,场区地下水可分为陆域地下水和海域地下水两段:

分布于陆域范围内地层中的地下水,据其赋存形式分为松散岩类孔隙水、风化基岩孔隙裂隙水、基岩裂隙水三种,均为潜水。其中松散岩类孔隙水赋存于第四系残积层中,风化基岩孔隙裂隙水赋存于基岩全~强风化层中,基岩裂隙水赋存于弱微风化基岩的风化裂隙及构造裂隙隙中。陆域地层中除可能存在的富水性好的基岩破碎带外,均为弱富水,渗透性较差,属于弱或微含水层。陆域地下水主要受大气降水的补给,就近向低洼地段排泄,总体上属于潜水,仅局部洼地(如西滨隧道出口处)因上覆土层中含大量高岭土的粘土相对隔水层,地下水具承压性,但承压水头是变化的,干旱季节承压转为无压。

主要指海域范围内地层中的地下水,据其赋存形式分为松散岩类孔隙水、风化基岩孔隙水及基岩裂隙水三种,其中松散岩类孔隙水赋存于第四系全新统海积层中,风化基岩孔隙裂隙水赋存于基岩全~强风化层中,基岩裂隙水赋存于弱微风化基岩的风化裂隙及构造裂隙隙中,海域地层中除海积的砂层(主要赋积在10+900以东西滨滩涂地段)及可能存在的富水性好的基岩破碎带外,总体上富水性弱,渗透性较差,为弱为含水层;海域地下水主要受海水的垂直入渗补给。

2.6.2地下水动态及补、迳、排条件

松散岩类孔隙水:地下水的动态受气候、地形的影响明显。地下水水位变化随降雨的频弱,变化剧烈,且有滞后现象。随地形的变化,地下水水位变化很大,水位变幅一般在0.33~4.0m。5~6月份水位最高,12月至翌年2月最低。大气降水是地下水的主要补给源,降水垂直入渗后,由高处向低洼处迳流,所以低洼处孔隙水除受大气降水的直接入渗补给外,还受侧向迳流的补给。局部受岩性影响略具承压性。松散岩类孔隙水除蒸发、人工抽取排泄外,多排向沟溪、河流、入海,少部分入渗补给下部弱含水岩组。

全~强风化岩层孔隙裂隙水:与松散岩类孔隙水实为一层地下水,两者间并无明显隔水层存在,全~强风化岩层孔隙裂隙水直接受上部松散岩类孔隙水的下渗补给,然后又缓慢的迳流或侧向补给基岩裂隙含水岩组。

基岩裂隙水:除出露地表者可直接接受大气降水的入渗补给外,隐伏型均受其他类型地下水的入渗补给,其迳流严格受裂隙形态控制,呈层状或带状,有时互不连通,无统一水面。

其动态和补、迳、排条件,均较陆域简单,三种地下水类型之间,均无隔水层存在,可视为一个无限厚的弱含水层,因同位于海水之下,均受海水的垂直入渗补给,仅隐伏于下部的含水岩组接受上部含水岩组的入渗补给或越流补给。

陆域地下水与海域地下水之间存在一条过渡带,受潮汐涨落影响,当海水处于高潮时,海水向陆域迳流,补给陆域地下水,反之陆域地下水向海域排泄。

2.6.3地下水的侵蚀性

依据《岩土工程勘察规范》(GB50021—2001)12.2.4、12.2.5条判定,陆域地下水对钢筋混凝土结构中的钢筋无腐蚀性、对钢结构具弱腐蚀性。

依据《岩土工程勘察规范》(GB50021—2001)12.2.4、12.2.5条判定,海域地下水对钢筋混凝土结构中的钢筋具弱腐蚀性、对钢结构具中等腐蚀。

2.6.4岩土层渗透系数

岩土层的渗透性指标的确定通过现场水文地质试验(抽水、压水)和室内试验(渗透系数、渗透破坏)获得。

测区内全强风化岩层为各向同性,为松散孔隙介质。基岩裂隙水属裂隙介质体,为各向异性不连续体,受结构面的控制。岩体在各个方向上的渗透系数不同,采用裂隙样本法进行等效化处理。当隧道完全置于全、强风化岩体中时,在渗透压力下,隧道存在发生渗透破坏的可能性。本合同段范围内岩土层渗透系数见表2.6.1。

表2.6.1岩土层渗透系数统计表

陆域暗挖隧道最大涌水量(Q01、Q02)及正常涌水量(Qs)分段计算见表2.6.2。海域段最大涌水量见表2.6.3。

表2.6.2陆域暗挖隧道最大涌水量及正常涌水量分段计算表

YK12+255~YK12+370

YK12+370~YK12+410

表2.6.3海域段最大涌水量计算表

YK9+700~YK10+630

YK10+630~YK10+725

DB14/T 2166-2020 曳引驱动电梯125%额定载荷制动试验规范.pdfYK10+725~YK10+980

YK10+980~YK11+095

YK11+095~YK11+265

YK11+265~YK11+530

YK11+530~YK11+715

YK11+715~YK12+255

DL/T 468-2019 电站锅炉风机选型和使用导则.pdf本合同段主要工程数量见表2.7.1。

©版权声明
相关文章